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ABSTRACT 

 
Methodology for identification of load’s development (including non-linear effects 

due to local damages), causing measured structural deformations is presented. The 
intelligent sensor system monitoring load scenario and the corresponding damage 
(plastic yield, buckling and/or brittle crack) development can play the role of a black 
box allowing an after-accident-diagnosis.. 

 
 

INTRODUCTION 
 

The objective is to present a methodology of damaging impact load identification on 
the base of local strain measurements done in few, properly chosen locations. The 
motivation to undertake the above research problem can be stimulated by the 
following examples of potential applications: 
 
• load monitoring as the input to adaptive (in real time) impact energy dissipation 

systems and to design of structures exposed to dynamic loadings 
• post-crash analysis allowing identification of cause of collision 
• development of numerical tools supporting design process of impact energy 

absorbing systems, 
 
The problem of identification of impact localisation for elastic membrane using the 
concept of so-called smart layer (thin layer with piezo-esnsors imbedded) has been 
discussed in [1,2,8,9]. The problem discussed in this paper is formulated more 
generally, including physically non-linear structural behaviour (e.g. plastic yielding). 
Let us assume that sensors system (e.g. piezo-transducers) distributed on the structure 
is able to measure and store the history of local strains development.  
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Then, the method of the corresponding load identification (the inverse problem) is 
based on so called Virtual Distortion Method (VDM) [3,4] making use of the dynamic 
influence matrix Dij(t). This matrix describes the dynamic structural response (strain 
development in time) in observed locations j caused by unit impulse (in time t=0) 
applied in location i . Taking into account unknown load intensities in locations i and 
in time instances τ<t, the objective function F describing mean-square distance 
between measured and modelled strains (in locations j and in time instances t) can be 
formulated. The problem of load identification leads in this case to the minimisation of 
the function F and can be based on the gradient optimisation technique, as the 
proposed approach allows numerically efficient, analytical sensitivity computation. 
The described above approach can be applied in the case of elastic structural response. 
In the case of elasto-plastic structural response, the analysis has to be generalised 
introducing additionally plastic distortions into the model (determined also on the base 
of the VDM method). Similar approach has been applied in structural adaptation to 
impact loads [6,7]. 
The problem formulation (restricted to small deformations) and methodology of the 
solution illustrated with numerical examples will be presented 
 
 
VDM BASED DYNAMIC ANALYSIS OF ELASTO-PLASTIC SYSTEMS 
 
In this chapter we will formulate the VDM based description of the dynamic response 
of elasto-plastic truss structure applying so-called impulse-influence-matrix ( )D tij

. The 

strain and stress development in element i of the structure loaded in nodes n and 
plastified in elements k can be expressed as follows:. 
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( )0

jα τ denotes in the above relations load intensities (components of external load) in 

node j, ( )0
kβ τ  denotes plastic distortion generated in element k and matrices 

(inD t )τ−  is called the impulse (or dynamic) influence matrices, describing 
dynamical response (strain development in time) in element i, caused by unit force 
applied in node n, and by unit virtual distortion modelling plastic yield in element k (in 
time instances tτ ≤ ). The unit force generating the influence matrix due to external 
loads is modelled via the Dirac’s type of impulse. The elements ( )D tij

 can be 

determined by integration of the equations of movement (e.g. through the Newmark’s 
algorithm), calculating deformations for the sequence of unit excitations of distortions 
in nodes n and elements k, while these indices run through nodes potentially loaded 
and elements potentially plastified. The influence matrices collect all information 
about the structure, including the boundary conditions. 



Let us describe elasto-plastic physical conditions through the following piece-wise-
linear formula with hardening (Fig.1): 
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Figure. 1 Piece-wise-linear constitutive relation. 
 
 
Substituting (1) to (2) and rearranging the formula, one can get the following equation: 
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Let us assume now, that the components of the influence matrices vanishes for the 
time instance t τ= , cf. (4), what is true for sufficiently dense time step. Then, the 
influence of impulse generated in element i is seen in other elements not immediately, 
but in the subsequent time steps. In the consequence, determination (on the base of 
(3)) of the plastic zone development in the time step t is much simpler (cf.(5)): 
 

( )0ijD 0=  (4) 

 
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

0 * 0
i i i

0
i

1 γ ε 1 γ

1 γ

i nj
t n

ik ik k
t k

t D t

D t
τ

τ

β τ nα τ

τ δ β τ
<

<

= − − + − − ⋅

+ − − − ⋅

∑∑

∑∑
 (5) 

 
where the right hand side of equation does not depend on the time instance t τ= . It 
depends only on the history of load and plastic zone development. The following 
relations have been used to reach the relation (5). 
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If external load is determined ( ( )0

n tα  is given), then for each time step, after reaching 
the yield stress level in one structural element, we have to determine from the formula 
(5) the plastic zone development and use the plastic distortions determined in this way 
to calculation of the right-hand sides of equation (5) in the subsequent time steps.  
 
 
PROBLEM FORMULATION AND GRADIENT-BASED METHOD OF THE 
IMPACT LOAD IDENTIFICATION 
 
Let us assume that the external load is unknown, what means that ( )0

n tα , describing 
load intensity development, together with plastic distortions, become the unknowns to 
be determined. Strain development measured in chosen elements are our input data 
allowing solving of the problem.  
The objective function f can be defined as the mean-square distance between the 
measured and modeled responses of strain development (in localizations m and time 
instances t). Then, the load identification leads to the following process of the 
objective function minimization: 
 

( ) ( ) ( )M
m m md t t tε ε= −  (7) 

 

( ) 2
m

t m
f d t= ⎡ ⎤⎣ ⎦∑∑  (8) 

 
where gradient based optimization techniques can be applied, as non-expensive 
analytical sensitivity analysis will be available.  
First, let us consider a fully elastic case, without plastic distortions generated due to 
local overloading. Deformations ( )m tε  are expressed by (9) in this case and gradient 
of the objective function takes the following form (10): 
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where elements m are observed (equipped with sensors) and indices n run through 
potentially loaded nodes. 



In the second case (elasto-plastic structure) the additional term responsible for plastic 
distortions has to be added to equation (1)a and the corresponding gradient of the 

objective function takes the form (10) where component ( )
( )

0
k

n

d
d

β τ
α τ

has to be determined 

from (2.3) by differentiating it with respect to nα . 
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After differentiation, we can get (11) and making use of the formula (4), the relation 
(12) can be derived. 
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Having gradient calculated, updating of ( )0

n tα can be performed in such a way that the 
objective function will be minimized. A simple, corresponding algorithm can be 
proposed as follows:   
 

( ) ( ) ( )0 0t t f tα α δ= + ∇ ⋅  (13) 

 
where: ( )f t∇  - denotes the gradient of the objective function. 
After updating of the load intensities new, dynamic, elasto-plastic analysis has to be 
performed, determining actualized development of plastic zones. Then, after 
actualized sensitivity analysis new updating of load intensities can be done. In this 
way, the iterative optimization process will lead us to the minimized objective 
function determining meantime the searched load distribution and the associated 
plastic distortions. 
 
 
NUMERICAL EXAMPLE 
 
Let us illustrate the proposed methodology with the example of truss beam structure 
shown in  



Fig.2. assuming, for simplicity of demonstration that the structure is not reaching the 
yield stress level during loading process.  
Dimensions are shown in Fig.2, while other data are specified below: 
material density:  7800 3

kg
m

⎡
⎢⎣

⎤
⎥⎦

, Young’s modulus 2.1e11 [Pa], cross-sections of 

elements, equal for all elements: 1e-4 2m⎡ ⎤⎣ ⎦  

 
Fig. 2 Example of testing truss-beam structure 

 
 
External load is modeled with the function shown in Fig. 3. A section of sinusoid 
starting in time step 50 (length of the time step: 0.05 ms), is ending in the time step 
300.  
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Fig. 3 Force modeling of load as the function of time steps. 
 
 
Strains measured in time by the sensor (Fig.2) in response to load (Fig.3) applied in 
the node shown in Fig.2 is shown as the continuous line in Fig.4. Taking this line as 
the measured reference signal, the load identification procedure described above has 
been executed. The obtained result of this inverse problem is shown as the dotted line 
in Fig.4. We can see, that both lines are almost identical. The evolution of the 
objective function (3,2) is shown in Fig.5. 
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Fig. 4 „Measured” strains versus modeled strains 
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Fig. 5 The objective function evolution 
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Fig. 6 Applied load versus identified load 
 
 
The „applied” external excitation (cf.Fig.3) versus identified loads are shown in Fig,6. 
Almost perfect match of both lines can be observed.  
 
 
 



CONCLUSIONS 
 
The methodology of identification of the load history (and the corresponding plastic 
zone development) in structures equipped with sensors measuring strains in few 
chosen elements is proposed. In many cases just one sensor observing local strain 
development in time allows precise identification of loading conditions. 
The proposed approach makes use of gradient-based optimization technique 
(minimization of the objective function denoting distance between measured and 
modeled signals). Analytical sensitivity analysis and automatic structural remodeling 
(VDM) do not require actualization of the global stiffness matrix and repetition of 
calculation of dynamic structural responses, what reduces significantly the numerical 
effort. 
It is possible to apply the proposed concept to develop automatic systems (accident 
black boxes) allowing diagnosis (made aposteriori) concerning determination of 
environmental conditions causing emergency situation. 
The proposed method of load identification can be also used in complex intelligent 
systems responding adaptively to variable environmental conditions (e.g. active 
adaptation to measured and identified in real time impact conditions). 
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